Program

Metabolic Engineering IX:
Metabolic Engineering and Synthetic Biology

June 3 –7, 2012

Biarritz, France

Conference Co-Chairs
Philippe Soucaille
Université de Toulouse, INSA, UPS, INP, France

Elmar Heinzle
Saarland University, Germany

Gregg Whited
Danisco, USA

Engineering Conferences International
32 Broadway, Suite 314, New York, NY 10004, USA
Phone: 1 - 212 - 514 - 6760, www.engconfintl.org – info@engconfintl.org
Le Bellevue Congress and Exhibition Centre
Place Bellevue
64200 Biarritz, France
Engineering Conferences International (ECI) is a not-for-profit global engineering conferences program, originally established in 1962, that provides opportunities for the exploration of problems and issues of concern to engineers and scientists from many disciplines.

ECI BOARD MEMBERS

Barry C. Buckland, President
Peter Gray
Michael King
Raymond McCabe
David Robinson
William Sachs
Eugene Schaefer
P. Somasundaran
Deborah Wiley

Chair of ECI Conferences Committee: William Sachs
ECI Technical Liaison for this conference: Barry Buckland

ECI Executive Director: Barbara K. Hickernell
ECI Associate Director: Kevin M. Korpics

©Engineering Conferences International
Poster Chairs
Hal Alper *(The University of Texas at Austin, USA)*
Chetan T. Goudar (Bayer Healthcare, USA)
Isabelle Meyniels-Salles (University of Toulouse, France)
Caroline Peres (Danisco, USA)

Conference Organization

Steering Committee Members
Barry Buckland (Biologics B and University College London)
Vassily Hatzimanikatis (EPFL, Switzerland)
Joseph J. Heijnen (TU Delft, Netherlands)
Sang Yup Lee (KAIST, Korea)
James Liao (UCLA, USA)
Jens Nielsen (Chalmers University, Sweden)
Matthias Reuss (University of Stuttgart, Germany)
Anthony Sinskey (MIT, USA)
Gregory Stephanopoulos (MIT, USA)

Scientific Advisory Committee Members
Maciek R. Antoniewicz (University of Delaware, USA)
Juan A. Asenjo (University of Chile, Chile)
George Bennett (Rice University, USA)
Michael Betenbaugh (Johns Hopkins University, USA)
George Chen (Tsinghua University China)
Wilfred Chen (University of California Riverside, USA)
Martin Fussenegger (ETH, Switzerland)
George Georgiou (University of Texas Austin, USA)
Ryan T. Gill (University of Colorado, USA)
Ramon Gonzales (Rice University, USA)
Jay Keasling (Joint BioEnergy Institute, USA)
Sun Chang Kim (KAIST, Korea)
Akihiko Kondo (University of Kobe, Japan)
Sang Yup Lee (KAIST, Korea)
Diethard Mattanovich (BOKU, Austria)
Costas D. Maranas (Pennsylvania State University, USA)
Lars K. Nielsen (University of Queensland, Australia)
Tae Kwang Oh (KRIBB, Korea)
Bernhard Palsson (University of California Berkeley, USA)
Eleftherios Terry Papoutsakis (University of Delaware, USA)
Octavio T. Ramirez (UNAM, Mexico)
Uwe Sauer (ETH, Switzerland)
Hiroshi Shimizu (Osaka University, Japan)
Kazuyuki Shimizu (Keio University Japan)
Christina Smolke (Stanford University USA)
Friedrich Srienc (University of Minnesota, USA)
Christopher A. Voigt (University of California San Francisco, USA)
Hans Westerhoff (University of Manchester, UK)
Wolfgang Wiechert (Research Center Julich, Germany)
Christoph Wittmann (University of Braunschweig, Germany)
An-Ping Zeng (Hamburg University, Germany)
Xue-Ming Zhao (Tianjin University, China)
Jian-Jiang Zhong (Shanghai Jiao Tong University, China)
Welcome from the Conference Co-Chairs

It is our great pleasure to welcome you all to Biarritz, France for the Metabolic Engineering IX Conference. ECI’s Metabolic Engineering is the longest running conference series of its kind, held every two years. This conference again emphasizes the interaction between cutting edge scientific developments and its rapid and successful transfer to sustainable industrial processes that help solving problems in the fields of supply of energy, particularly biofuels, of biomaterials, food and feed ingredients as well as compounds of pharmaceutical interest. The conference covers systems biology, synthetic biology, biochemical engineering, tools and methods, and emerging techniques, drugs, biofuels, biorefinery, and microbial and mammalian systems in the context of metabolic engineering. We hope that you will enjoy the state-of-the-art science and technology in metabolic engineering that will be shared at the conference. This conference will be a successful showcase of what we have done and what we can do with metabolic engineering and synthetic biology for the green growth of our world.

We are very pleased to inform you that we have more than 330 participants from more than 25 countries around the world. Attendees are well balanced among academia, industry and research institutes. Also, it is truly great to have more than 85 graduate students.

We have put a strong emphasis on the poster sessions to create a central scientific market place for the extended exchange of scientific results and ideas. The poster session room is the large and beautiful, with a splendid view of the Atlantic waves. We want to thank all the board members and session chairs for putting together a great program. We also would like to thank the poster chairs, Hal Alper (University of Texas, USA), Chetan T. Goudar (Bayer Healthcare, USA), Isabelle Meynial-Salles (University of Toulouse, France) and Caroline Peres (Danisco, USA), who put much effort into evaluating and selecting posters for presentation. We have more than 200 posters being presented at the conference and there will be a number of poster awards given out for the best presentations. Three Student/Young Investigator Poster Awards will be sponsored or co-sponsored by ECI and additional awards will be sponsored by the journals Metabolic Engineering (Elsevier), ACS Synthetic Biology (ACS), Journal of Industrial Microbiology & Biotechnology (Springer), Bioprocess & Biosystems Engineering (Springer) and Biotechnology Journal (Wiley). In addition, Metabolic Engineering Journal (Elsevier) will sponsor an award for the best overall poster of the conference.

The tradition of the most important and prestigious award in the field of metabolic engineering, the "International Metabolic Engineering Award," is continued in 2012. Professor Jay Keasling from the University of California, Berkeley, will receive this prize for his great accomplishments and leadership in metabolic engineering of biofuels and secondary metabolites and his dedication to the metabolic engineering community. Congratulations, Jay!

The Jay Bailey Young Investigator Best Paper Award will be presented as well. This year’s winner is Dr. Christopher Henry, a scientist in the Mathematics and Computer Science division at Argonne National Lab. In the winning paper in Nature Biotechnology, Dr. Henry and colleagues describe a new web resource, called the Model SEED, for automated reconstruction of draft genome-scale metabolic models.

This conference is run at a rather high cost. It would not have been possible to hold our conference in Biarritz without generous support from the many companies listed in this booklet. On behalf of all of us, we would like to sincerely thank them for the kind support, especially at this financially difficult time.

There are many people we want to thank for making this conference possible. In particular, we want to thank Barbara Hickernell, Kathy Chan, and Kevin Korpics of ECI for providing streamlined administration. Also, we owe many thanks to Barry Buckland and Jens Nielsen from the Steering Committee for their valuable support.

We hope you will enjoy the conference and your stay in Biarritz. Again, welcome to Metabolic Engineering IX and welcome to Biarritz!

Co-Chairs of the conference

Elmar Heinzle
Saarland University
Germany

Philippe Soucaille
University of Toulouse
France

Gregg Whited
Danisco
USA
The 2012 International Metabolic Engineering Award has been given to Professor Jay Keasling for his contributions to the field of metabolic engineering, through development of novel technologies and bioprocesses. Dr. Keasling is well known for his impressive work on metabolic engineering of yeast and \textit{E. coli} for production of the antimalarial drug artemisinin, which became the foundation needed for commercial production. He also has a number of other seminal contributions to the field, including metabolic engineering of microorganisms for production of advanced biofuels. Dr. Keasling has also pioneered the development of a number of advanced technologies that have enabled metabolic engineering, including a range of methods for controlled protein expression.

Dr. Keasling is the Hubbard Howe Jr. Distinguished Professor of Biochemical Engineering at the University of California, Berkeley, in the Departments of Bioengineering and Chemical and Biomolecular Engineering, senior faculty scientist and Associate Laboratory Director for Biosciences at Lawrence Berkeley National Laboratory, Chief Executive Officer of the Joint BioEnergy Institute (JBEI), and director of the Synthetic Biology Engineering Research Center (SynBERC). Dr. Keasling’s current research focuses on the metabolic engineering of microorganisms for degradation of environmental contaminants or for environmentally friendly synthesis of drugs, chemicals, and fuels.

Dr. Keasling received a B.S. in Chemistry and Biology from the University of Nebraska and M.S. and Ph.D. in Chemical Engineering from the University of Michigan, and did post-doctoral research in biochemistry at Stanford University. He is a member of the National Academy of Engineering. Dr. Keasling received the inaugural \textit{Biotech Humanitarian Award} from the Biotechnology Industry Organization in 2009, the 2007 \textit{Professional Progress Award} from the American Institute for Chemical Engineers, the first ever \textit{Scientist of the Year} award from Discover Magazine in 2006, and the \textit{Technology Pioneer} award from the World Economic Forum in 2005. Dr. Keasling is also the founder of Amyris, LS9, and Lygos.
2012 Jay Bailey Young Investigator Best Paper Award

Chris Henry

Winning Paper: "High-throughput generation, optimization and analysis of genome-scale metabolic models"
Christopher S Henry (corresponding author), Matthew DeJongh, Aaron A Best, Paul M Frybarger, Ben Linsay & Rick L Stevens

Dr. Christopher Henry is a scientist in the Mathematics and Computer Science division at Argonne National Laboratory. He also has joint appointments at the University of Chicago and Northwestern University. Dr. Henry is an expert in metabolic modeling, flux balance analysis, and biochemical thermodynamics. He is the co-lead for the Microbial Science team of the DOE Knowledgebase, and he is the PI for the Model SEED resource. Currently, Dr. Henry is conducting research in automated metabolic model reconstruction and refinement, integration of omics data into biological models, and large-scale analysis of microbial community behavior. Dr. Henry received his B.S. in Chemical Engineering from the University of Dayton (2002), and his Ph.D. in Chemical Engineering from Northwestern University (2007).

In their article in Nature Biotechnology, Henry and colleagues describe a new web resource, called the Model SEED, for automated reconstruction of draft genome-scale metabolic models. The approach annotates the genes in a genome sequence, maps these genes to metabolic reactions, computes a 'biomass reaction' for simulating growth and then optimizes the model using several established techniques. Henry and colleagues apply this resource to create new genome-scale models for 130 diverse microbial genomes, ranging from metabolically self-sufficient bacteria to parasites that rely on their hosts to provide many essential metabolic functions. The authors show how the models can be used to improve genome annotation and to assess global trends in microbial metabolism. They also demonstrate how Biolog phenotype arrays and gene essentiality data may be used to validate these models and further boost accuracy using flux-balance-analysis-based data fitting techniques. Since its release with the publication of this manuscript in Nature Biotechnology, Model SEED has been applied by 1300 scientists worldwide to construct over 13,000 metabolic models.

This award was instituted in honor of Jay Bailey, a visionary of future directions in biotechnological research and a brilliant contributor to the founding and advancement of the field of metabolic engineering (see Metabolic Engineering 3, 393, 2001; Biotechnology and Bioengineering 79 (5), 2002). The purpose of the award is to recognize outstanding research accomplishments in the field of metabolic engineering by a young investigator.
Conference Sponsors

Total
Genomatica
GS Caltex

BASF
BP plc
DuPont
Merck and Co., Inc.

Biotechnology and Bioengineering
DSM
Evonik Industries
LifeTechnologies
Metabolic Explorer
Novozymes
OPXBIO
Sandoz
Solvay

American Chemical Society
Bayer
Bio Base Europe Pilot Plant
Carbios
Cargill
Gevo, Inc.
Mascoma
Roquette
Sunday, June 3, 2012

15:00 – 18:00 Conference check-in (Le Bellevue Congress Center, Entrance Hall)

18:00 – 18:40 Plenary Lecture 1
Vincent Schachter, Total Gas & Power, France
Developing industrial biotechnology through strategic partnerships

18:40 – 19:20 Plenary Lecture 2
Rolf Müller, Saarland University, Germany
Genomics based engineering for the identification and optimization of bioactive microbial natural products

19:30 – 22:00 Welcome cocktail dinner and Poster Session

NOTES

• Technical sessions will be held in the Auditorium.
• Poster sessions will be held in Atlantique Room.
• Lunches will be held in the Rotonde Room.
• The conference banquet on Wednesday will be held in a Basque farmhouse in the countryside. Buses will depart promptly at 19:00 from Casino Municipal in front of the town hall and Hotel Plaza.
• Audiotaping, videotaping and photography of presentations are prohibited.
• Speakers – Please leave at least 5 minutes for questions and discussion.
• Please do not smoke at any conference functions.
• Turn your cellular telephones to vibrate or off during technical sessions.
• After the conference, ECI will send an updated participant list to all participants. Please check your listing now and if it needs updating, you may correct it at any time by logging into your ECI account.
Monday, June 4, 2012

Breakfast at your hotel

09:00 – 09:40 **Plenary Lecture 3**
James Liao, University of California Los Angeles, USA
A tale of two butanols

09:40 – 12:10 **Session 1: Metabolic Engineering for Fuels and Chemicals**
Sponsored by Total
Jay Keasling, USA and Akihiko Kondo, Japan

09:40 – 10:10 **Ramon Gonzalez**, Rice University, USA
Modular biosynthesis for the production of advanced fuels and chemicals

10:10 – 10:40 Coffee break / Posters available for viewing

10:40 – 11:10 **Akihiko Kondo**, Kobe University, Japan
Development of microbial cell factories for the production of bio-fuels and bio-based chemicals through consolidated bioprocessing

11:10 – 11:40 **Donald E Trimbur**, LS9, USA
Advances in the production of fuels and chemicals derived from fatty acid metabolism

11:40 – 12:10 **Bryan Rush**, Cargill, USA
Turning a novel yeast into a platform host for industrial production of fuels and chemicals

12:10 Lunch on your own / Free afternoon

16:30 – 19:00 **Session 2: Metabolic Engineering for Chemicals and Materials**
Sponsored by GS Caltex
Friedrich Srienc, USA and George Chen, China

16:30 – 17:00 **Isabelle Meynia-Salles**, University of Toulouse, France
Combination of rational metabolic engineering and evolutionary engineering to develop efficient cell factories for the production of chemicals

17:00 – 17:30 **Sheng Yang**, Shanghai Institutes for Biological Sciences, China
Optimizing pentose utilization in Clostridia for improved solvents production from lignocellulosic hydrolystates

17:30 – 18:00 **Brian Pfleger**, University of Wisconsin-Madison, USA
Metabolic engineering of bacteria for the production of alpha-olefins

18:00 – 18:30 **George Guo-Qiang Chen**, Tsinghua University, China
Limitless opportunities for microbial production of hydroxyalkanoates based chemicals and materials

18:30 – 19:00 Discussion

19:00 – 22:00 Cocktail dinner and Poster Session
(Authors of odd-numbered posters are asked to stay by their posters.)
Tuesday, June 5, 2012

Breakfast at your hotel

09:00 – 09:40 **Plenary Lecture 4**
Sven Panke, ETH, Switzerland
Assembling and optimizing *in vitro* pathways

09:40 – 12:15 **Session 3: Emerging Tools and Methods in Metabolic Engineering**
Vassily Hatzimanikatis, Switzerland and Joseph J. Heijnen, The Netherlands

09:40 – 10:10 **Lothar Eggeling**, Forschungszentrum Jülich GmbH, Germany
Metabolite sensors for single-cell isolation of producing bacteria

10:10 – 10:40 Coffee break / Posters available for viewing

10:40 – 11:10 **Ryan Gill**, University of Colorado, USA
Towards writing genomes: Drafting, editing, revising and publishing

11:10 – 11:40 **Vassily Hatzimanikatis**, EPLF Lausanne, Switzerland
Frameworks for the development and analysis of genome-scale kinetic models

11:40 – 12:10 **Friedrich Srienc**, University of Minnesota, USA
Predicting evolution

12:15 – 14:00 Lunch

14:00 – 14:40 **Plenary Lecture 5**
Sang Yup Lee, KAIST, Korea
Systems metabolic engineering for chemicals and materials

14:40 – 17:10 **Session 4: Systems Biology and Metabolic Engineering**
Sponsored by Genomatica
Jens Nielsen, Sweden and Wolfgang Wiechert, Germany

14:40 – 15:10 **Bernhard Palsson**, University of California Berkeley, USA
Expanded genome-scale models for metabolic engineering

15:10 – 15:40 **Jens Nielsen**, Chalmers Institute of Technology, Sweden
Systems biology of metabolism: Enabling technologies for metabolic engineering of yeast

15:40 – 16:10 Coffee break / Posters available for viewing

16:10 – 16:40 **Steffen Klamt**, Max Planck Institute, Magdeburg, Germany
Minimal cut sets as computational tool in metabolic engineering: novel theoretical results and their applications

16:40 – 17:10 **Amit Deshmukh**, TU Delft, The Netherlands
Understanding *in vivo* kinetics and transport through stimulus response experiments: *Penicillium chrysogenum* as host strain

17:10 – 19:00 Break

19:00 – 20:30 Dinner (Rotonde)

20:30 - 22:30 Poster Session / Social Hour
(Authors of even-numbered posters are asked to stay by their posters.)
Wednesday, June 6, 2012

Breakfast at your hotel

09:00 – 09:40 **Plenary Lecture 6**
Jeff Hasty, University of California San Diego, USA
Engineered gene circuits: From oscillators to synchronized clocks and biopixels

09:40 – 12:10 **Session 5: Synthetic Biology and Metabolic Engineering**
An-Ping Zeng, Germany and Christopher Voigt, USA

09:40 – 10:10 **An-Ping Zeng**, Institute of Bioprocess and Biosystems Engineering, Germany
Structure-based metabolic engineering and synthetic biology for efficient strain development

10:10 – 10:40 Coffee break / Posters available for viewing

10:40 – 11:10 **Christopher Voigt**, Massachusetts Institute of Technology, USA
Programming bacteria

11:10 – 11:40 **Huimin Zhao**, University of Illinois at Urbana-Champaign, USA
Pathway engineering via synthetic biology

11:40 – 12:10 **Hal Alper**, The University of Texas at Austin, USA
Synthetic control of transcription: From hybrid promoters to promoter engineering to synthetic operon design

12:15 – 14:30 Lunch

14:30 – 17:00 **Session 6: Metabolic Engineering of Industrial Microorganism**
Lars Nielsen, Australia and Christoph Wittmann, Germany

14:30 – 15:00 **Octavio Ramirez**, UNAM, Mexico
Metabolic engineering strategies for overcoming environmental heterogeneities during process scale-up

15:00 – 15:30 **Christoph Wittmann**, Technical University Braunschweig, Germany
Making use of models – In-silico driven metabolic engineering of industrial microorganisms

15:30 – 16:00 Coffee break / Posters available for viewing

16:00 – 16:30 **Mark Burk**, Genomatica, USA
Sustainable production of industrial chemicals using microbial biocatalysts: 1,4-butanediol

16:30 – 17:00 **Hiroshi Shimizu**, University of Osaka, Japan
Genome-wide multi-omics analysis of ethanol stress tolerant strain of *Escherichia coli* created by evolution engineering

17:00 – 17:45 Metabolic Engineering Award 2012 Lecture

17:45 – 17:55 **Jay Bailey Young Investigator Best Paper Award Presentation**

19:00 – 22:00 Conference Gala Dinner (at a Basque Farmhouse in the countryside)
Buses will depart promptly from Casino municipal (in front of the town hall and Hotel Plaza) at 19:00
Thursday, June 7, 2012

Breakfast at your hotel

09:30 – 12:00 **Session 7: Industrial Applications of Metabolic Engineering**
Ramon Gonzalez, USA and Oskar Zelder, Germany

09:30 – 10:00 **Stefan Turk**, DMS Biotechnology Center, The Netherlands
Fermentative production of 6-amino-caproic acid: Towards sustainable Nylon-6

10:00 – 10:30 **Ethel Jackson**, DuPont, USA
Engineering of metabolic pathways and global regulators of *Yarrowia lipolytica* to produce high value commercial products

10:30 – 11:00 Coffee break

11:00 – 11:30 **Stefan de Kok**, Amyris, USA
High throughput pathway engineering and screening for the high volume production of renewable chemicals in *Saccharomyces cerevisiae*: the industrialization of synthetic biology

11:30 – 12:00 **Esben H. Hansen**, Evolva Biotech A/S, Denmark
In-cell enzymatic glycosylation: A way to improve productivity of heterologous biosynthesis pathways in micro-organisms.

12:00 – 13:20 Lunch

13:20 – 14:00 **Plenary Lecture 7**
Gregory Stephanopoulos, MIT, USA
New frontiers of metabolic engineering: Linking cancer and metabolism via isotope labeling and network analysis

14:00 – 16:30 **Session 8: Metabolic Engineering for Cell Culture and for Health**
Martin Fussenegger, Switzerland and Michael Betenbaugh, USA

14:00 – 14:30 **Martin Fussenegger**, ETH, Switzerland
Reprogramming mammalian cells for therapeutic applications

14:30 – 15:00 **Michael Betenbaugh**, Johns Hopkins University, USA
‘Omics approaches to enhance mammalian cell metabolic engineering

15:00 – 15:30 Coffee Break

15:30 – 16:00 **Christian M. Metallo**, University of California San Diego, USA
Metabolic regulation of human cells by oncogenes and the microenvironment

16:00 – 16:30 **Maciek Antoniewicz**, University of Delaware, USA
Dynamic 13C-metabolic flux analysis and parallel labeling experiments elucidate the rewiring of metabolic fluxes in CHO cell cultures

16:30 Closing Remarks
Posters

1. **A systems biology approach to characterize *Pseudomonas putida*’s potential as whole cell biocatalyst**
 Birgitta E. Ebert, RWTH Aachen University, Germany

2. **Enabling pyrolytic substrate utilization for the production of biorenewable fuels and chemicals**
 Laura R. Jarboe, Iowa State University, USA

3. **Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells**
 Taylor A Murphy, Vanderbilt University, USA

4. **Modular-based reconstruction of allosteric protein for dynamic control of cellular metabolism**
 Zhen Chen, Hamburg University of Technology, Germany

5. **Dissection and engineering of xylose-metabolic pathway in Clostridium acetobutylicum**
 Yang Gu, Chinese Academy of Sciences, China

6. **DNA supercoiling-mediated mechanism of L-glutamine overproduction in *Escherichia coli***
 Mikiro Hayashi, Kyowa Hakko Bio Co., Ltd., Japan

7. **Development of gamma-aminobutyric acid (GABA) overproducing recombinant *Escherichia coli* by engineering of glutamate decarboxylase and GABA transporter**
 SoonHo Hong, University of Ulsan, Korea

8. **5-aminolevulinic acid accumulation from glucose in Engineering *Escherichia coli***
 Qingsheng Qi, Shandong University, China

9. **Yeasts as biocatalysts for the desulfurization of xenobiotics**
 Tomas Linder, Swedish University of Agricultural Sciences, Sweden

10. **Bacterial copper biosensor construction through bacterial two-component system engineering**
 SoonHo Hong, University of Ulsan, Korea

11. **Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in *Escherichia coli***
 Soojin Lee, Sogang University, Korea

12. **Control of phosphate metabolism in a xylose-fermenting yeast strain improves ethanol production from xylose.**
 Tomohisa Hasunuma, Kobe University, Japan

13. **Recombinant protein products causing metabolic interferences in the host CHO cells**
 Erno Pungor Jr., BioMarin Pharmaceutical Inc, USA

14. **Reconstruction of sugar utilization pathways and regulons in solventogenic clostridia**
 Chen Yang, Chinese Academy of Sciences, China

15. **Regulation of metabolic fluxes in bacteria by acetylation of metabolic enzymes**
 Chen Yang, Chinese Academy of Sciences, China
16. Quorum sensing-based IPTG-free system for production of bisabolene as a precursor of advanced biofuels in engineered E. coli
 Han Min Woo, Lawrence Berkeley National Laboratory / Korea Institute of Science and Technology, USA/Korea

17. Rational design of 13C-Labeling experiments for metabolic flux analysis using elementary metabolite unit-basis vectors (EMU-BV)
 Scott B. Crown, University of Delaware, USA

18. Advances in metabolic flux analysis: Parallel labeling experiments and dynamic metabolic flux analysis
 Robert W. Leighty, University of Delaware, USA

19. Tandem mass spectrometry: A new frontier in 13C-metabolic flux analysis
 Jungik Choi, University of Delaware, USA

20. Consolidated bioprocessing for bioethanol production from agricultural waste biomass using a diploid yeast strain with optimized cellulase expression
 Ryosuke Yamada, Kobe University, Japan

21. Co-expression of acca, fabd and thioesterase genes for increasing intracellular long-chain fatty acids in pseudomonas aeruginosa and Escherichia coli
 Sunhee Lee, Sogang University, Korea

22. A quantitative, graded dominant mutant approach for probing protein function and gene regulation
 Amanda M. Lanza, The University of Texas at Austin, USA

23. Metabolic engineering of Escherichia coli to overproduce 10-hydroxystearic acid from oleic acid
 Eun-Yeong Jeon, Ewha Womans University, Korea

24. Quantitative Quenching Evaluation and Direct Intracellular Metabolite Analysis of Penicillium chrysogenum Industrial Production Cultivations
 Timo Hardiman, Sandoz GmbH, Austria

25. Metabolic engineering of Corynebacterium glutamicum for biotransformation of ¥á-keto acid precursors into non-proteinogenic amino acids
 Jin-Byung Park, Ewha Womans University, Korea

26. Engineering streptomyces pristinaespiralis for improved pristinamycin production
 Yinhua Lu, Chinese Academy of Sciences, China

27. Metabolic flux analysis of cyanobacteria on various trophic conditions
 Tsubasa Nakajima, Osaka University, Japan

28. Effect of metabolic inhibitors on yeast central metabolism
 Fumio Matsuda, Kobe University, Japan

29. Genome-scale reconstruction of metabolic network for yarrowia lipolytica and its applications in understanding of oleaginous yeasts
 Qiang Hua, East China University of Science and Technology, China

30. Towards high-throughput single cell growth optimization and production analysis using picoliter bioreactors
 Wolfgang Wiechert, Forschungszentrum Jülich GmbH, Germany
| 31. | Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals
Laura R. Jarboe, Iowa State University, USA |
| 32. | Efficient production of a model short peptide surfactant in high cell density *Escherichia coli* BL21(DE3) culture from sucrose feedstock
Michele Bruschi, The University of Queensland, Australia |
| 33. | Alkane-biofuel production with engineered cyanobacterial pathways
András Pásztor, University of Turku, Finland |
| 34. | Improvement of butanol production from xylose mother liquor by engineering xylose metabolic pathway in *Clostridium acetobutylicum* EA2018
Yu Jiang, Chinese Academy of Sciences, China |
| 35. | Development of recombinant Klebsiella pneumoniae for the enhanced 2,3-butanediol production
Borim Kim, Sogang University, Korea |
| 36. | Engineering corynebacterium glutamicum for L-Valine production
Bastian Blombach, University of Stuttgart, Germany |
| 37. | Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production by *Saccharomyces cerevisiae*
Jun Ishii, Kobe University, Japan |
| 38. | Manipulation of the major lactococcal glucose-PTS properties by single base substitution
Ana Rute Neves, Universidade Nova de Lisboa/Instituto de Biologia Experimental e Tecnológica (ITQB-UNL/IBET), Portugal |
| 39. | Functional implementation of the posttranslational secb-seca protein targeting pathway in *Bacillus subtilis*
Liuyang Diao, Chinese Academy of Sciences, China |
| 40. | Predictive design of mrna translation initiation region to control prokaryotic translation efficiency
Sang Woo Seo, Pohang University of Science and Technology (POSTECH), Korea |
| 41. | Reprograming translational process for functional expression of heterologous enzymes in *Escherichia coli*
Byung Eun Min, Pohang University of Science and Technology (POSTECH), Korea |
| 42. | Synthetic RNA devices to expedite evolution of metabolite-producing *Escherichia coli*
Jina Yang, Pohang University of Science and Technology (POSTECH), Korea |
| 43. | In silico aid metabolic engineering design for improving strain performance of *Bacillus subtilis* on its representative products
Tong Hao, Tianjin University, China |
| 44. | In silico platform for rational heterologous pathway design of nonnative metabolites using genome-metabolic networks information
Sunisa Chatsurachai, Osaka University, Japan |
| 45. | Exo-metabolomics: An underestimated tool in systems biology
Stephan Noack, Forschungszentrum Jülich GmbH, Germany |
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.</td>
<td>A computational method for exploring extensive biosynthetic pathways</td>
<td>Michihiro Araki, Kyoto University, Japan</td>
</tr>
<tr>
<td>47.</td>
<td>A multi-tissue genome-scale metabolic modeling for analysis of whole plant systems</td>
<td>Cristiana G.O. Dal’Molin, The University of Queensland, Australia</td>
</tr>
<tr>
<td>48.</td>
<td>Development of Enterobacter aerogenes mutants for enhancing 2,3-butanediol production</td>
<td>Moo-Young Jung, Korea university, Korea</td>
</tr>
<tr>
<td>49.</td>
<td>Evolving and engineering actinobacillus succinogenes for succinate production from lignocellulose hydrolysate</td>
<td>Nikolas McPherson, Michigan State University, USA</td>
</tr>
<tr>
<td>50.</td>
<td>Identification of acetogenic 2,3-butanediol and lactate production pathways and reconstruction in metabolically engineered E. coli</td>
<td>Wendy Yiting Chen, LanzaTech NZ Ltd, New Zealand</td>
</tr>
<tr>
<td>51.</td>
<td>In vivo immobilization of lipase on the surface of polyhydroxybutyrate granule</td>
<td>Taek Ho Yang, GS Caltex Corporation, Korea</td>
</tr>
<tr>
<td>52.</td>
<td>Metabolic engineering of Escherichia coli for the fumaric acid production by aerobic system</td>
<td>Chan Woo Song, Korea Advanced Institute of Science and Technology (KAIST), Korea</td>
</tr>
<tr>
<td>53.</td>
<td>Production of isopropanol using recombinant Clostridium beijerinckii NCIMB 8052</td>
<td>Seunghwan Lee, Korea Research Institute of Chemical Technology, Korea</td>
</tr>
<tr>
<td>54.</td>
<td>Metabolic engineering of Escherichia coli for the production of hydrocarbons</td>
<td>Yong Jun Choi, Korea Advanced Institute of Science and Technology (KAIST), Korea</td>
</tr>
<tr>
<td>55.</td>
<td>Application of a transformation mediated chemically inducible chromosomal evolution (CICHE) method to biodiesel production in Saccharomyces cerevisiae</td>
<td>Shuobo Shi, Chalmers University of Technology, Sweden</td>
</tr>
<tr>
<td>56.</td>
<td>A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae</td>
<td>Hal Alper, The University of Texas at Austin, USA</td>
</tr>
<tr>
<td>57.</td>
<td>Exploring the metabolic burden response to the increased production of free fatty acids in Synechocystis sp. PCC 6803</td>
<td>Christie A. M. Peebles, Colorado State University, USA</td>
</tr>
<tr>
<td>58.</td>
<td>Establishment of a markerless mutation delivery system in Bacillus subtilis stimulated by a double-strand break in the chromosome</td>
<td>Zhiwen Wang, Tianjin University, China</td>
</tr>
<tr>
<td>59.</td>
<td>Metabolic engineering for oxaloacetate accumulation through pyruvate kinase deletion in Corynebacterium glutamicum</td>
<td>Kazunori Sawada, Hokkaido University, Japan</td>
</tr>
<tr>
<td>60.</td>
<td>IMP accumulation in coryneform bacteria: A comparison of rational strain design and classical mutagenesis</td>
<td>Konstantin Schneider, Saarland University, Germany</td>
</tr>
</tbody>
</table>
61. **Engineered pheromone communication for nutrient and quorum sensing in yeast**
 Thomas C. Williams, The University of Queensland, Australia

62. **Population dynamics of pseudomonas putida kt2440 under iron stressed conditions**
 Ralf Takors, University of Stuttgart, Germany

63. **Systems biology analysis of amylase producing yeast strains**
 Zihe Liu, Chalmers University of Technology, Sweden

64. **System level analyses of trade-off mechanism in gal evolved mutants of yeast on glucose**
 Kuk-Ki Hong, Chalmers University of Technology, Sweden

65. **Generation and characterization of E. Coli strains lacking PTS with modifications at the PEP-pyr node in order to increase the availability of PEP towards aromatic production coultilizing glucose and acetate**
 Andrea Sabido, Universidad Nacional Autónoma de México., Mexico

66. **Fastpros: Screening method of multiple gene knockout for microbial production using genome-scale metabolic model**
 Satoshi Ohno, Osaka University, Japan

67. **Ethanol reduces mitochondrial membrane integrity and thereby impacts carbon metabolism of Saccharomyces cerevisiae**
 Ji-Min Woo, Ewha Womans University, Korea

68. **Genome-scale metabolic network reconstruction of a thermophilic bacterium Thermus thermophilus HB27**
 NaRae Lee, Ewha Womans University, Korea

69. **Modeling growth, fluxes and cofactor turnover of all single enzyme deletion and overexpression mutants of E.coli central metabolism**
 Joost Groot, University of Colorado Boulder, USA

70. **Systematic characterization of flux and network thermodynamic states for identification of metabolic engineering targets**
 Keng Cher Soh, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

71. **Simplicity makes sense: A (straight) forward approach to modelling anaerobic yeast metabolism**
 K.M. Bekers, Delft University of Technology, The Netherlands

72. **Single strand solid-phase cloning**
 Magnus Lundqvist, Royal Institute of Technology (KTH), Sweden

73. **In silico atom labeling to trace and analyze the flux distribution metabolic networks**
 Noushin Hadadi, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

74. **Production of 2,3-butanediol by Klebsiella oxytoca from glycerol**
 Chelladurai Rathnasingh, GS Caltex Corporation, Korea

75. **Metabolic engineering of Escherichia coli for the production of polyhydroxyalkanoates incorporating 2-hydroxybutyrate**
 Min Kyung Kim, Korea Advanced Institute of Science and Technology (KAIST), Korea
| 76. | Development of sucrose-utilizing *Escherichia coli* K-12 strain by introduction of ¥â-fructofuranosidases and its application for threonine production
Sol Choi, Korea Advanced Institute of Science and Technology (KAIST), Korea |
| 77. | Improvement of L-Arginine production by corynebacterium glutamicum through In silico-based metabolic engineering
Seok Hyun Park, Korea Advanced Institute of Science and Technology (KAIST), Korea |
| 78. | Systems metabolic engineering of *Escherichia coli* for the enhanced production of putrescine
Sol Choi, Korea Advanced Institute of Science and Technology (KAIST), Korea |
| 79. | Fed-batch fermentation of Lactobacillus rhamnosus for high concentration of lactic acid production from date juice
Yongjun Choi, Korea Advanced Institute of Science and Technology (KAIST), Korea |
| 80. | Transcriptome engineering of cyanobacteria for the production of chemicals and improved solvent tolerance
Josefine Anfelt, Royal Institute of Technology (KTH), Sweden |
| 81. | Metabolic engineering of *Escherichia coli* for the production of trans-4-Hydroxy-L-Proline
Eleni Theodosiou, TU Dortmund University, Germany |
| 82. | Metabolic engineering for optimizing NADPH dependent 3HP production in *Saccharomyces cerevisiae*
Niels Bjerg Jensen, Technical University of Denmark, Denmark |
| 83. | Shmks1 and II are plant enzymes sufficient for *E. Coli* to produce methylketones
Geng Yu, The University of Michigan, USA |
| 84. | Efficient vanillin synthesis through engineering auto-regulatory genetic circuits in *Escherichia coli*
Tat-Ming Samuel Lo, Nanyang Technological University, Singapore |
| 85. | Developing a platform cell factory through engineering of yeast acetyl-coa metabolism
Yun Chen, Chalmers University of Technology, Sweden |
| 86. | Efficient screening a high glutathione-content mutant of Saccharomyces cerevisiae by flow cytometry
Zheng Wang, Beijing University of Chemical Technology, China |
| 87. | Engineering *Actinobacillus succinogenes* for succinate production from glycerol
Claire Vieille, Michigan State University, USA |
| 88. | Evaluation of different metabolic routes for 3-hydroxypropionic acid production in *Saccharomyces cerevisiae*
Irina Borodina, Technical University of Denmark, Denmark |
| 89. | Engineering yeast to produce natural flavors and active pharmaceutical ingredients from fatty acids
Jens Schrader, DEHEMA Research Institute, Germany |
| 90. | Recombinant production of lipophilic compounds (tocotrienol and astaxanthin) in recombinant *Escherichia coli* strains
Georg A. Sprenger, University of Stuttgart, Germany |
91. Engineering a fatty yeast for renewable production of carotenoids
 Adam G Lawrence, DSM Nutritional Products, USA

92. Metabolic engineering of *Escherichia coli* for the fumaric acid production by aerobic system
 Chan Woo Song, Korea Advanced Institute of Science and Technology (KAIST), Korea

93. Modulation of endogenous pathways enhances bioethanol yield and productivity in *Escherichia coli*
 Neha Munjal, International Centre for Genetic Engineering and Biotechnology, India

94. Engineering of Clostridium acetobutylicum ATCC 824 towards a mixed alcohol producer
 Sang Yup Lee, Institute for the BioCentury, Korea

95. Overexpression of NADH-dependent fumarate reductase in xylose fermenting *Saccharomyces cerevisiae*
 Laura Salusjärvi, VTT Technical Research Centre of Finland, Finland

96. Biological hydrogen production beyond current limits
 Sebastiaan K. Spaans, Wageningen University, The Netherlands

97. Assessing the relative potential of biosynthetic pathways for advanced biofuels and bio-based products
 Deepak Dugar, Massachusetts Institute of Technology, USA

98. Pathways for synthesis of advanced biofuels
 Deepak Dugar, Massachusetts Institute of Technology, USA

99. Yeast development for cellulosic ethanol production
 Marja Ilmén, VTT Technical Research Centre of Finland, Finland

100. Toward development of an optimal modular cell for production of chemicals and biofuels
 Cong T. Trinh, University of Tennessee, USA

101. A metabolic pathway module for formate conversion to biofuel precursors in *Escherichia coli*
 Amanda Lee Smith, University of Washington, USA

102. Reduction of glycerol formation during anaerobic growth of a *Saccharomyces cerevisiae* strain engineered to produce formate
 D. Aaron Argyros, Mascoma Corporation, USA

103. The metabolic load of recombinant protein expression in CHO cells
 Zahra Sheikholeslami, Ecole Polytechnique de Montreal, Canada

104. Control of a long-duration high-density perfusion cell culture using continuous oxygen uptake rate
 Jason Walther, Genzyme, a Sanofi Company, USA

105. Metabolic flux analysis of HEK293 cells producing viral vectors for gene therapy against alcoholism
 Barbara Andrews, University of Chile, Chile
106. Fluxome profiling of CHO cells under different productive states
 Tiago M. Duarte, IBET/ITQB-UNL, Portugal

107. Selecting thermophilic bacilli as hosts for white biotechnology applications
 Elleke F. Bosma, Wageningen University, The Netherlands

108. Synthetic metabolic engineering of corynebacterium glutamicum for bio-based production of 1,5-diaminopentane
 Stefanie Kind, Technische Universität Braunschweig, Germany

109. Unravelling the Leloir pathway in bifidobacterium bifidum
 Frederik De Bruyn, Ghent University, Belgium

110. Producing 1-octanol and tolerating n-butanol with Pseudomonas putida in industry-like applications
 Ralf Takors, University of Stuttgart, Germany

111. Enhanced production of native-sized recombinant spider dragline silk protein in *Escherichia coli* through synthetic biology approach using orthogonal ribosome
 Hannah Chung, Korea Advanced Institute of Science and Technology (KAIST), Korea

112. DNA guided assembly line
 Rok Gaber, National institute of Chemistry, Slovenia

113. Oligo-based Gibson assembly – a new way of creating expression variability
 Pieter Coussement, Ghent University, Belgium

114. Engineering the transcription machinery of *E. coli* to enable efficient functional screening of heterologous or metagenomic libraries
 Stefan M. Gaida, University of Delaware, USA

115. The development of a genetically encoded, function-based taxol biosensor
 George McArthur IV, Imperial College London, United Kingdom

116. Systems metabolic engineering of *Escherichia coli* W for L-valine production
 Sang Yup Lee, Institute for the BioCentury, Korea

117. Systems-level analysis of baculovirus-host interactions: From genomic to metabolomic decomposition
 Francisca Monteiro, Universidade Nova de Lisboa/Instituto de Biologia Experimental e Tecnológica (ITQB-UNL/IBET), Portugal

118. The impact of respiratory regulation on heterologous protein production in *Saccharomyces cerevisiae*
 José L. Martínez, Chalmers University of Technology, Sweden

119. Metabolic control analysis of the central carbon pathway in optimally grown *E. coli*
 Stefano Andreozzi, École Polytechnique Fédérale De Lausanne (EPFL), Switzerland

120. The metabolic response to stepwise ethanol increase in *S. Cerevisiae*
 K.M. Bekers, Delft University of Technology, The Netherlands

121. Quantitative relationship between gene expression and metabolite levels is jointly determined by reaction mechanism and network connectivity
 Aleksej Zeleznik, European Molecular Biology Laboratory, Germany
122. Interrelation between 4-hydroxyproline production and the central carbon metabolism in recombinant Escherichia coli expressing 2-oxoglutarate-dependent proline-4-hydroxylase
Oliver Frick, Technical University Dortmund, Germany

123. Smart, small metabolite regulated, promoters for optimizing Saccharomyces cerevisiae industrial bioprocesses
Jérôme Maury, Technical University of Denmark, Denmark

124. Towards a platform organism for terpenoid production – in silico comparison of E. Coli and S. Cerevisiae as potential hosts
Evamaria Gruchattka, Technical University Dortmund University, Germany

125. Are genes regulated or constitutive? An experimental-based contribution
Martin Siemann-Herzberg, University Stuttgart, Germany

126. Metabolic model-based prediction of engineering targets for increased production of heterologous proteins
Justyna Nocon, University of Natural Resources and Life Sciences, Austria

127. Identification of flux profiles from dynamic labeling experiments: S. Cerevisiae cultivation under fast feast/famine conditions
C. Suarez-Mendez, Delft University of Technology, The Netherlands

128. Flux regulation at a primary metabolic node: Lessons for acetyl-coa derived products
Karthik Sekar, Northwestern University, USA

129. Scaffolding platform for expression of P450 enzymes
Ulla Christensen, Technical University of Denmark, Denmark

130. Metabolomic and metabolic flux profiling of recombinant Pichia pastoris growing on glucose: methanol mixtures
Pau Ferrer, Universitat Autònoma de Barcelona, Spain

131. Comparison of the productivity of a new human cell line in different steady states of continuous cultivations using MFA
Susann Freund, Max Planck Institute for Dynamics of Complex Technical Systems, Germany

132. A quantitative metabolomics study of the oxygen availability impact on recombinant Pichia pastoris central carbon metabolism
Pau Ferrer, Universitat Autònoma de Barcelona, Spain

133. Metabolomics and 13C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain under aerobic and anaerobic conditions
Thomas Wasylenko, Massachusetts Institute of Technology, United States

134. Systems biotechnology of Bacillus megaterium for recombinant protein production
Florian David, Technische Universität Braunschweig, Germany

135. Combining rational and evolutionary approaches to optimize enzyme activity in Saccharomyces cerevisiae
Joshua K. Michener, California Institute of Technology, USA

136. Understanding in-vivo kinetics and transport through stimulus response experiments: Penicillium chrysogenum as host strain
Amit T. Deshmukh, Delft University of Technology, The Netherlands
137. **Pooled segregant whole-genome sequence analysis: A novel method for inverse metabolic engineering of Saccharomyces cerevisiae**
Georg Hubmann, Katholieke Universiteit Leuven, Belgium

138. **Rapid manufacture of custom TAL effectors for genomic editing and genetic circuits.**
Michael Poderycki, Life Technologies Corporation, USA

139. **Systems biology in Synechocystis sp. PCC 6803**
Katsunori Yoshikawa, Osaka University, Japan

140. **Estimation of metabolic rewiring of CHO cell metabolism from growth phase to non-growth phase by multiple isotopic tracers and mass spectrometry**
Woo Suk Ahn, University of Delaware, USA

141. **Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis**
Jamey D. Young, Vanderbilt University, USA

142. **Computational design of new enzyme building blocks for novel metabolic pathways**
Alexandre Zanghellini, Arzeda Corporation, USA

143. **Shikimate pathway engineering for the production of aromatic building blocks in Saccharomyces cerevisiae**
Jens O Krömer, The University of Queensland, Australia

144. **RELATCH: A new computational tool for predicting metabolic responses to genetic and environmental perturbations**
Jennifer L. Reed, University of Wisconsin-Madison, USA

145. **Novel computational strain optimization approaches for increasing the productivity of microorganisms**
Oliver Hädicke, Max Planck Institute for Dynamics of Complex Technical Systems, Germany

146. **Design, assembly, editing and interspecies transfer of genetic constructs for synthetic biology engineering**
Federico Katzen, Life Technologies Corporation, USA

147. **Sequence analysis of the L-Arginine biosynthesis gene cluster and metabolic engineering in Corynebacterium crenatum**
Zhiming Rao, Jiangnan University, China

148. **Thermodynamic based choice of metabolic engineering strategies**
Sergio Bordel, Chalmers University of Technology, Sweden

149. **Sequencing of a genome shuffled S. cerevisiae strain to generate inverse engineering targets for lignocellulosic substrate inhibitor tolerance**
Dominic Pinel, Concordia University, Canada

150. **A second-generation uracil-excision molecular cloning standard for metabolic engineering**
Morten Nørholm, Technical University of Denmark, Denmark

151. **Synthetic metabolons facilitate substrate channeling and pathway regulation**
Y-H Percival Zhang, Virginia Tech, USA
152. Theoretical yield biofuels production through \textit{in vitro} metabolic engineering
Y-H Percival Zhang, Virginia Tech, USA

153. A cell factory of Bacillus subtilis engineered for the simple bioconversion of myo-inositol
to scylo-inositol, a potential therapeutic agent for Alzheimer’s disease
Ken-ichi Yoshida, Kobe University, Japan

154. Use of transcription factors to visualize small-molecules at the single cell level, and
application to metabolic engineering
Lothar Eggeling, Forschungszentrum Jülich GmbH, Germany

155. Genome-scale robust strain design
Patrick Hyland, University of Toronto, Canada

156. Improved product-per-glucose yield in a reductive whole-cell biotransformation with
\textit{Escherichia coli}
Solvej Siedler, Forschungszentrum Juelich GmbH, Germany

157. MetaFlux: A tool for completing and constructing flux balance models
Mario Latendresse, SRI International, USA

158. Rational cell design for small molecule synthesis by pseudomonas putida
Lars M. Blank, RWTH Aachen University, Germany

159. Buried under a plethora of elementary modes - integer programming comes to the rescue
Christian Jungreuthmayer, Austrian Centre of Industrial Biotechnology (ACIB), Austria

160. The protein acetylation pathway and central metabolism of \textit{Escherichia coli}: The role of
cAMP on regulation
Vicente Bernal, University of Murcia, Spain

161. Using heat shock proteins (hsp) to enhance recombinant protein production in CHO
cells
Janice G. L. Tan, Bioprocessing Technology Institute, Singapore

162. Insights to improve microalgae as direct bioethanol producer
Marie Demuez, IMDEA Energy, Spain

163. Engineering of recombinant protein secretion based on systems biology
Diethard Mattanovich, University of Natural Resources and Life Sciences, Austria

164. Metabolic engineering in silico enabled by genome-scale models with flux ratio
constraints
Ryan S. Senger, Virginia Tech, USA

165. Metabolic engineering for high-level styrene biosynthesis
Oliver Yu, Wuxi New Way Biotechnology Ltd., China

166. Metabolic engineering to increase production of malonyl-CoA derived products
Ron Evans, OPX Biotechnologies, Inc., USA
167. **Novel codon optimization approach towards designing synthetic genes for metabolic pathway engineering**
Dong-Yup Lee, National University of Singapore, Singapore

168. **Novel tools for dynamic 13C-metabolic flux analysis: Tandem mass spectrometry and parallel labeling experiments**
Maciek R. Antoniewicz, University of Delaware, USA

169. **Reconstruction of genome-scale metabolic network of Bacillus subtilis - iBsu1140 and its application on in vivo metabolic engineering design**
Tong Hao, Tianjin University, China

170. **Regularization of inverse problems in metabolic engineering: A novel approach**
Juan A. Asenjo, University of Chile, Chile

171. **Tailoring Corynebacterium glutamicum for L-lysine production by systems metabolic engineering**
Judith Becker, Technische Universität Braunschweig, Germany

172. **Sustainable production of major industrial chemicals using microbial biocatalysts: 1,4-butanediol**
Mark Burk, Genomatica, USA

173. **RibM from Streptomyces davawensis is a riboflavin/roseoflavin transporter and may be useful for the optimization of riboflavin production strains**
Matthias Mack, Mannheim University of Applied Sciences, Germany

174. **The construction of engineered Saccharomyces cerevisiae lead to increased ethanol productivity from blending of glucose and xylose**
Elis Eleutherio, UFRJ, Brazil

175. **Metabolite sensors for single-cell isolation of producing bacteria**
Lothar Eggeling, Forschungszentrum Juelich GmbH, Germany

176. **Using redox potential for strain improvement: from engineering to global understanding**
Yanping Zhang, Chinese Academy of Sciences, China

177. **A method to reduce quenching to 10 seconds in mammalian suspension cell cultures**
Juan A. Hernández Bort, ACIB GmbH, Austrian Centre of Industrial Biotechnology, Austria

178. **Enhanced succinate production by Mannheimia succiniciproducens using integrated multi-omics strategy**
Chan Woo Song, Korea Advanced Institute of Science and Technology (KAIST), Korea

179. **Simultaneously and selectively removing sulfur and nitrogen contaminants from fossil fuels by synthetic biotechnology**
Bo Yu, Chinese Academy of Sciences, China

180. **Metabolic engineering of Escherichia coli for the production of 1-propanol**
Yong jun Choi, Korea Advanced Institute of Science and Technology (KAIST), Korea
181. A robotic platform for high-throughput fluxome analysis
Stéphanie Heux, LISBP-INSA Toulouse, France

182. Biosynthesis of polylactic acid and its copolymers in recombinant e. coli
Min Kyung Kim, Korea Advanced Institute of Science and Technology (KAIST), Korea

183. Metabolic engineering for the production of malate using high succinic acid producer
Sol Choi, Korea Advanced Institute of Science and Technology (KAIST), Korea

184. Metabolic Engineering of Escherichia coli and Corynebacterium glutamicum for the production of 1,5-diaminopentane
Seok Hyun Park, Korea Advanced Institute of Science and Technology (KAIST), Korea

185. Metabolic flux based improvement of α1-antitrypsin production in the human cell line AGE1.HN
Jens Niklas, Insilico Biotechnology AG, Germany

186. Calculation of constrained minimal cut sets including regulatory information by the utilization of binary linear programming
Christian Jungreuthmayer, Austrian Centre of Industrial Biotechnology (ACIB), Austria

187. Recombinant whole cell production of human tetrahydrocannabinol metabolites
Torsten Tobias Arndt, Technische Universität Dortmund, Germany

188. Predictive metabolic network models for industrial bioprocesses – accelerating process design and improving host cell engineering
Jens Niklas, Insilico Biotechnology AG, Germany

189. Metabolic engineering of E. coli for the production of UDP-glucose using permeabilized cells
Christian Weyler, Saarland University, Germany

190. Identification and characterization of a novel diterpene gene cluster in Aspergillus nidulans
Mervi Toivari, VTT, Finland

191. Exploring the allosteric mechanism of dihydrodipicolinate synthase by reverse engineering of the allosteric inhibitor binding sites and its application for lysine production
Zhen Chen, Hamburg University of Technology, Germany

192. Proteomic analysis and manipulation of the central metabolism for optimizing the production of optically active (R,R)-2,3-butanediol by Paenibacillus polymyxa
Wei Wang, Hamburg University of Technology, Germany

193. Expanding the feedstock range: Bio-inspired engineering of microbial producer strains for the production of value products from renewable and waste carbon streams
Jörg Mampel, Biotechnology Research and Information Network AG (B.R.I.A.N.), Germany

194. Exploring the allosteric mechanism of dihydrodipicolinate synthase by reverse engineering of the allosteric inhibitor binding sites and its application for lysine production
Zhen Chen, Hamburg University of Technology, Germany
195. Enhanced butyric acid productivity by 2-deoxy-D-glucose-adapted Clostridium tyrobutyricum on glucose and xylose mixtures with non-diauxic growth
Han Min Woo, Korea Institute of Science and Technology, Republic of Korea

196. Bio-based production of polyamide 6 and polyamide 6,6 monomers
Liang Wu, DSM Biotechnology Center, The Netherlands

197. Improvement of butanol production from xylose mother liquor by engineering xylose metabolic pathway in Clostridium acetobutylicum EA2018
Yu Jiang, Chinese Academy of Sciences, China

198. The metabolic response to stepwise ethanol increase in S. cerevisiae,
K.M. Bekers, Delft University of Technology, The Netherlands

199. Metabolic changes in murine and human cardiomyocytes induced by subtoxic concentrations of doxorubicin
Elmar Heinzle, Saarland University, Germany

200. Quantitative quenching evaluation and direct intracellular metabolite analysis of penicillium chrysogenum industrial production cultivations
Timo Hardiman, Sandoz GmbH, SU Development Anti-Infectives, Austria

201. Metabolic engineering for pathway rewiring and enhancement of spinosyn biosynthesis in Saccharopolyspora spinosa
Babu Raman, Dow AgroSciences, USA

202. Analysis of constraint based in silico metabolic model of rhodococcus erythropolis for efficient biodesulfurization
Dong-Yup Lee, National University of Singapore, Singapore

203. Mammalian systems biotechnology for characterizing CHO cell and HESC cultures
Dong-Yup Lee, National University of Singapore, Singapore

204. Discovery of a yet unknown mammalian pathway linking metabolism to immunity: Immune response gene 1 (IRG1) catalyzes the synthesis of the antimicrobial compound itaconic acid
Thekla Cordes, University of Luxembourg, Luxembourg

205. Unraveling in vivo kinetics of penicillin biosynthesis pathway
Amit T. Deshmukh, Delft University of Technology, The Netherlands

206. New insights into substrate supply and regulation of FK506 biosynthesis and their implications for bioprocess development and drug discovery
Gregor Kosec, Acies Bio d.o.o., Slovenia

207. Flux and metabolite flexibility in Escherichia coli at seconds time scale in response to rapid shifts of substrate excess
Walter M. van Gulik, Delft University of Technology, The Netherlands

208. Combination of metabolic engineering and enzyme fusion technology for Improved production of amorphadiene in Saccharomyces cerevisiae
Rama Raju Baadhe, National Institute of Technology, INDIA
209. Application of metabolome data and thermodynamics for the development of efficient xylose-fermenting *Saccharomyces cerevisiae*
 Basti Bergdahl, Lund University, Sweden

210. Enhanced xylan degradation and xylitol production by *Candida tropicalis* overexpressing fungal xylanase
 Chun Li, Beijing Institute of Technology, China

211. Use both rational metabolic engineering and adaptive evolutionary to select an efficient *E. coli* cell factory for the production of 1.3-propanediol from glucose
 Liang Tian, LISBP-INSA Toulouse, France

212. In vivo carbon fluxes in *Schizosaccharomyces pombe*: Applying 13C metabolic flux analysis in parallel small-scale continuous cultivations
 Tobias Klein, Saarland University, Germany

213. New molecular toolkit for yeast engineering
 Gregory Stephanopoulos, Massachusetts Institute of Technology, USA